Forum PROFESJA -=BarManI=- KRAKÓW Strona Główna PROFESJA -=BarManI=- KRAKÓW
(: Alkohole to Nasza Specjalność :)
 
 POMOCPOMOC   FAQFAQ   SzukajSzukaj   UżytkownicyUżytkownicy   GrupyGrupy   RejestracjaRejestracja 
 ProfilProfil   Zaloguj się, by sprawdzić wiadomościZaloguj się, by sprawdzić wiadomości   ZalogujZaloguj 

How does decision tree pruning help in reducing overfitting?

 
Napisz nowy temat   Odpowiedz do tematu    Forum PROFESJA -=BarManI=- KRAKÓW Strona Główna -> Jestem tu nowy/nowa...
Zobacz poprzedni temat :: Zobacz następny temat  
Autor Wiadomość
Mandeep555



Dołączył: 10 Paź 2024
Posty: 2

PostWysłany: Pon Mar 03, 2025 09:58    Temat postu: How does decision tree pruning help in reducing overfitting? Odpowiedz z cytatem

In machine learning, decision tree pruning is an important technique that reduces overfitting while improving the model's ability to generalize new data. Overfitting is when a decision-tree captures noise from the training dataset and becomes too complex. It also becomes highly specific to that data. Unpruned trees may achieve 100% accuracy in the training data, but perform poorly when compared to unseen data. By simplifying the structure of the tree, pruning can address this problem. Data Science Course in Pune

There are two types of pruning, pre-pruning or post-pruning. Pre-pruning (also known as early stopping) involves setting limits on the growth of the tree during training. These constraints can include limiting tree depth, defining the minimum number of split samples, or defining an information gain threshold. Pre-pruning can prevent excessive branching by limiting the growth of trees. This can reduce overfitting. Pre-pruning can have a downside, however, as it may stop the tree too soon, missing important patterns.

The post-pruning is done after the tree has grown to its full potential. This method removes branches that have little predictive value. Post-pruning techniques include cost-complexity and reduced-error pruning. Cost-complexity prune involves calculating a model-performance-based error metric, and removing branches which do not improve it significantly. Reduced-error pruners use a validation set that tests the impact of node removal. They then prune those that don't improve accuracy. Post-pruning, which involves systematically removing unnecessary splits from the tree, ensures that it remains interpretable and has predictive power.

Pruning improves model generalization through a reduction in variance. A pruned tree will be less likely to remember noise or fluctuations in the data. This makes it more suitable for real-world prediction. In addition, pruning increases computational efficiency because it reduces the size of the trees, speeding up the prediction process. In practical applications decision tree pruning is used to solve classification and regression problems, where efficiency and interpretability are important.

Conclusion: Decision tree pruning is an effective technique for reducing overfitting while improving model performance. Pruning ensures that the decision tree captures meaningful patterns and avoids unnecessary complexity by carefully balancing accuracy with tree complexity. This technique, whether it is pre-pruning of post-pruning is crucial for the development of robust and reliable models.
Powrót do góry
Ogląda profil użytkownika Wyślij prywatną wiadomość
Reklama






Wysłany: Pon Mar 03, 2025 09:58    Temat postu:

Powrót do góry
Wyświetl posty z ostatnich:   
Napisz nowy temat   Odpowiedz do tematu    Forum PROFESJA -=BarManI=- KRAKÓW Strona Główna -> Jestem tu nowy/nowa... Wszystkie czasy w strefie CET (Europa)
Strona 1 z 1
Skocz do:  
Nie możesz pisać nowych tematów
Nie możesz odpowiadać w tematach
Nie możesz zmieniać swoich postów
Nie możesz usuwać swoich postów
Nie możesz głosować w ankietach

PROFESJA -=BarManI=- KRAKÓW  

To forum działa w systemie phorum.pl
Masz pomysł na forum? Załóż forum za darmo!
Forum narusza regulamin? Powiadom nas o tym!
Powered by Active24, phpBB © phpBB Group